Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata

نویسندگان

  • Kousha Etessami
  • Thomas Wilke
  • Rebecca A. Schuller
چکیده

We give efficient algorithms, improving optimal known bounds, for computing a variety of simulation relations on the state space of a Büchi automaton. Our algorithms are derived via a unified and simple parity-game framework. This framework incorporates previously studied notions like fair and direct simulation, but also a new natural notion of simulation called delayed simulation, which we introduce for the purpose of state space reduction. We show that delayed simulation—unlike fair simulation—preserves the automaton language upon quotienting and allows substantially better state space reduction than direct simulation. Using our parity-game approach, which relies on an algorithm by Jurdziński, we give efficient algorithms for computing all of the above simulations. In particular, we obtain an O(mn3)-time and O(mn)-space algorithm for computing both the delayed and the fair simulation relations. The best prior algorithm for fair simulation requires time and space O(n6). Our framework also allows one to compute bisimulations: we compute the fair bisimulation relation in O(mn3) time and O(mn) space, whereas the best prior algorithm for fair bisimulation requires time and space O(n10).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fair Simulation for Nondeterministic and Probabilistic Buechi Automata: a Coalgebraic Perspective

Notions of simulation, among other uses, provide a computationally tractable and sound (but not necessarily complete) proof method for language inclusion. They have been comprehensively studied by Lynch and Vaandrager for nondeterministic and timed systems; for (nondeterministic) Büchi automata the notion of fair simulation has been introduced by Henzinger, Kupferman and Rajamani. We contribute...

متن کامل

Quantitative Fair Simulation Gamest

Simulation is an attractive alternative for language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. For non-deterministic automata, while language inclusion is PSPACE-complete, simulation can be computed in polynomial time. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simula...

متن کامل

Beyond Hyper-Minimisation---Minimising DBAs and DPAs is NP-Complete

In this paper we study the problem of minimising deterministic automata over finite and infinite words. Deterministic finite automata are the simplest devices to recognise regular languages, and deterministic Büchi, Co-Büchi, and parity automata play a similar role in the recognition of ω-regular languages. While it is well known that the minimisation of deterministic finite and weak automata i...

متن کامل

Minimisation of Deterministic Parity and Buchi Automata and Relative Minimisation of Deterministic Finite Automata

In this report we study the problem of minimising deterministic automata over finite and infinite words. Deterministic finite automata are the simplest devices to recognise regular languages, and deterministic Büchi, Co-Büchi, and parity automata play a similar role in the recognition of ω-regular languages. While it is well known that the minimisation of deterministic finite and weak automata ...

متن کامل

Simulation relations for alternating Büchi automata

We adapt direct, delayed, and fair simulation to alternating Büchi automata. Unlike with nondeterministic Büchi automata, naive quotients do not preserve the recognized language. As a remedy, we present specifically designed definitions of quotients, namely minimax and semi-elective quotients: minimax quotients, which are simple and have a minimum number of transitions, preserve the recognized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2001